Ultrasonic testing

In ultrasonic testing (UT), very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz and occasionally up to 50 MHz are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion.

Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is a form of non-destructive testing used in many industries including aerospace, automotive and other transportation sectors.

How it works

In ultrasonic testing, an ultrasound transducer connected to a diagnostic machine is passed over the object being inspected. The transducer is typically separated from the test object by a couplant (such as oil) or by water, as in immersion testing. However, when ultrasonic testing is conducted with an Electromagnetic Acoustic Transducer (EMAT) the use of couplant is not required.

There are two methods of receiving the ultrasound waveform: reflection and attenuation. In reflection (or pulse-echo) mode, the transducer performs both the sending and the receiving of the pulsed waves as the “sound” is reflected back to the device. Reflected ultrasound comes from an interface, such as the back wall of the object or from an imperfection within the object. The diagnostic machine displays these results in the form of a signal with an amplitude representing the intensity of the reflection and the distance, representing the arrival time of the reflection. In attenuation (or through-transmission) mode, a transmitter sends ultrasound through one surface, and a separate receiver detects the amount that has reached it on another surface after traveling through the medium. Imperfections or other conditions in the space between the transmitter and receiver reduce the amount of sound transmitted, thus revealing their presence. Using the couplant increases the efficiency of the process by reducing the losses in the ultrasonic wave energy due to separation between the surfaces.

Advantages

  1. High penetrating power, which allows the detection of flaws deep in the part.
  2. High sensitivity, permitting the detection of extremely small flaws.
  3. Only one surface needs to be accessible.
  4. Greater accuracy than other nondestructive methods in determining the depth of internal flaws and the thickness of parts with parallel surfaces.
  5. Some capability of estimating the size, orientation, shape and nature of defects.
  6. Non hazardous to operations or to nearby personnel and has no effect on equipment and materials in the vicinity.
  7. Capable of portable or highly automated operation.

Disadvantages

  1. Manual operation requires careful attention by experienced technicians. The transducers alert to both normal structure of some materials, tolerable anomalies of other specimens (both termed “noise”) and to faults therein severe enough to compromise specimen integrity. These signals must be distinguished by a skilled technician, possibly, after follow up with other nondestructive testing methods.
  2. Extensive technical knowledge is required for the development of inspection procedures.
  3. Parts that are rough, irregular in shape, very small or thin, or not homogeneous are difficult to inspect.
  4. Surface must be prepared by cleaning and removing loose scale, paint, etc., although paint that is properly bonded to a surface need not be removed.
  5. Couplants are needed to provide effective transfer of ultrasonic wave energy between transducers and parts being inspected unless a non-contact technique is used. Non-contact techniques include Laser and Electro Magnetic Acoustic Transducers (EMAT).
  6. Inspected items must be water resistant, when using water based couplants that do not contain rust inhibitors.

Standards

International Organization for Standardization (ISO)
  • ISO 7963, Non-destructive testing – Ultrasonic testing – Specification for calibration block No. 2
  • ISO/DIS 11666, Non-destructive testing of welds – Ultrasonic testing of welded joints – Acceptance levels
  • ISO/DIS 17640, Non-destructive testing of welds – Ultrasonic testing of welded joints
  • ISO 22825, Non-destructive testing of welds – Ultrasonic testing – Testing of welds in austenitic steels and nickel-based alloys
European Committee for Standardization (CEN)
  • EN 583, Non-destructive testing – Ultrasonic examination
  • EN 1330-4, Non destructive testing – Terminology – Part 4: Terms used in ultrasonic testing
  • EN 1712, Non-destructive testing of welds – Ultrasonic testing of welded joints – Acceptance levels
  • EN 1713, Non-destructive testing of welds – Ultrasonic testing – Characterization of indications in welds
  • EN 1714, Non-destructive testing of welds – Ultrasonic testing of welded joints
  • EN 12223, Non-destructive testing – Ultrasonic examination – Specification for calibration block No. 1 is replaced by the EN ISO 2400:2012 “Non-destructive testing – Ultrasonic testing – Specification for calibration block No. 1″
  • EN 12668-1, Non-destructive testing – Characterization and verification of ultrasonic examination equipment – Part 1: Instruments
  • EN 12668-2, Non-destructive testing – Characterization and verification of ultrasonic examination equipment – Part 2: Probes
  • EN 12668-3, Non-destructive testing – Characterization and verification of ultrasonic examination equipment – Part 3: Combined equipment
  • EN 12680, Founding – Ultrasonic examination
  • EN 14127, Non-destructive testing – Ultrasonic thickness measurement
Posted in Рубрика